MATSYS

Posts Tagged ‘Recursive’

Sietch Nevada

Sectional perspective of underground city

Sectional perspective of underground city

View of the urban life amoun the water bank canals

View of the urban life among the water bank canals

Site plan

Site plan

Plan, above ground (left) and below ground (right)

Plan, above ground (left) and below ground (right)

Site model

Site model

Detail of site model

Detail of site model

Year: 2009
Location: 37°46’20.10″N, 117°31’57.38″W
Exhibition: Out of Water | innovative technologies in arid climates at the University of Toronto

Description: In Frank Herbert’s famous1965 novel Dune, he describes a planet that has undergone nearly complete desertification. Dune has been called the “first planetary ecology novel” and forecasts a dystopian world without water. The few remaining inhabitants have secluded themselves from their harsh environment in what could be called subterranean oasises. Far from idyllic, these havens, known as sietch, are essentially underground water storage banks. Water is wealth in this alternate reality. It is preciously conserved, rationed with strict authority, and secretly hidden and protected.

Although this science fiction novel sounded alien in 1965, the concept of a water-poor world is quickly becoming a reality, especially in the American Southwest. Lured by cheap land and the promise of endless water via the powerful Colorado River, millions have made this area their home. However, the Colorado River has been desiccated by both heavy agricultural use and global warming to the point that it now ends in an intermittent trickle in Baja California. Towns that once relied on the river for water have increasingly begun to create underground water banks for use in emergency drought conditions. However, as droughts are becoming more frequent and severe, these water banks will become more than simply emergency precautions.

Sietch Nevada projects waterbanking as the fundamental factor in future urban infrastructure in the American Southwest. Sietch Nevada is an urban prototype that makes the storage, use, and collection of water essential to the form and performance of urban life. Inverting the stereotypical Southwest urban patterns of dispersed programs open to the sky, the Sietch is a dense, underground community. A network of storage canals is covered with undulating residential and commercial structures. These canals connect the city with vast aquifers deep underground and provide transportation as well as agricultural irrigation. The caverns brim with dense, urban life: an underground Venice. Cellular in form, these structures constitute a new neighborhood typology that mediates between the subterranean urban network and the surface level activities of water harvesting, energy generation, and urban agriculture and aquaculture. However, the Sietch is also a bunker-like fortress preparing for the inevitable wars over water in the region.

Credit: Andrew Kudless (Design), Nenad Katic (Visualization), Tan Nguyen, Pia-Jacqlyn Malinis, Jafe Meltesen-Lee, Benjamin Barragan (Model)

S_Window

2D_window20

window-20_matsys

win_23_college

Year: 2008
Location: London

Description: Matsys was asked to submit quick sketch designs for temporary window installation in a London department store. Several windows were considered with potential designs for each. The design for the corner window explored self-organizing branching structures through the use of elastic cords and free nodes. The structure’s shape would be determined by the location of the upper and lower constraints and the self-organization of the individual members.

The side window builds off of the research in the R_Screen and Sky Rail projects. The bone-like wall opens and closes view into the store according to the direction of travel on the sidewalk.

R_Screen

Recursive Subdivision between 5 source lines

Recursive Subdivision between 5 source lines

test_01

test_02

rail_full_M2_02

Year: 2007
Location: New York

Description: Over the last 5 years there have been a large number of projects dealing with the population of components on a surface. To a large extent, most follow a simple UV (distorted grid) across a curved surface. Even most projects that do not appear to use a rectangular grid (like my very own Honeycomb projects) are still tied to the UV grid. This short research project explored a tiling system that does not use a regular UV grid as the underlying framework for the component population. Instead, the system works with a series of user-generated frames and recursive sub-divisions within that frame. The user sets how many generations of recursion as well as the number of subdivisions at each generation of recursion. The result is a highly non-uniform cellular pattern that still allows easy component population.

The script was further developed for the Sky Rail project.