MATSYS

Posts Tagged ‘Plaster’

P_Wall (2013)


Date: 2013
Size: 6.1m x 3.6 x 0.3m
Materials: Fiber-Reinforced Thin-Shell Precast Concrete Panels mounted on Steel Frame
Tools: Rhino, Grasshopper, Kangaroo
Location: FRAC Centre, Orleans, France
Fabrication: Concreteworks, Oakland, California

Description:
P_Wall (2013), part of on-going research by Matsys into the use of flexible formwork (see earlier projects in the series here, here, here, and here), celebrates the self-organization of material under force. The form emerges through the interaction of the elastic fabric formwork and the liquid slurry of plaster. The designer has control over the locations of the constraints on the fabric which inform the overall form of each panel, but the specific curvature is determined solely by the system finding a state of equilibrium between mass and elasticity.

This iteration of the wall focused on three areas of innovation in reference to past iterations. First, this wall is the first to be constructed out of fiber-reinforced concrete rather than plaster. Rather than solid panels, each panel is only 2cm thick, vastly reducing the weight of each panel and allowing them to be much larger than previous installations. This process entailed the use of five original fabric-cast plaster patterns and subsequent rubber molds for the thin-shell concrete fabrication process.

Second, we were interested in exploring the boundary between modularity and repetition. At what point is something that is modular also repetitious? At what point does a pattern emerge that conflicts with a desired informal landscape? Using a tiling pattern of four panel sizes and five modules rotated in two directions, the pattern is never repeated across a total of thirty-four panels.

Third, using digital simulation models, a rough approximation of the wall was created virtually that allowed many more rounds of design iteration and testing in comparison with earlier projects in the series. Using a spring-network of meshes, the elastic fabric and the mass of the liquid plaster slurry could be modeled within an acceptable range of accuracy based on physical testing.


P_Wall (2013), by Matsys at the FRAC Centre, Orleans, France

P_Wall (2013), by Matsys at the FRAC Centre, Orleans, France

P_Wall (2013), by Matsys at the FRAC Centre, Orleans, France

IMG_9176P_Wall (2013), by Matsys at the FRAC Centre, Orleans, France_clean_1200

P_Wall Reinstalled @ SFMoMA

SFMoMA has reinstalled the P_Wall (2009) piece in their 5th Floor Gallery overlooking the Sculpture Garden. The wall is part of their “The More Things Change” exhibition focusing on the work of emerging artists over the last decade. The exhibition closes on November 6, 2011.

(Note: The amazing chair shown in the images is, unfortunately, not mine. The chair is by Dutch designers Tejo Remy & René Veenhuizen. The curators at SFMoMA did a great job pairing the wall and chair together.)

P_Wall(2009)

IMG_1734_mod_01_web

IMG_1745_mod_01_web

IMG_1751_mod_01_web

IMG_1748_mod_01_web

IMG_1733_mod_01_web

elevation_low_04

Wall-Elevation_web

Year: 2009
Location: San Francisco Museum of Modern Art
Size: 45′ x 12′ x 1.5′

Description: P_Wall (2009) was commissioned by the SFMOMA Architecture and Design Curator Henry Urbach for the exhibition Sensate: Bodies and Design. The wall, part of a series started with P_Wall (2006), is an evolution of the earlier work exploring the self-organization of material under force. Using nylon fabric and wooden dowels as form-work, the weight of the liquid plaster slurry causes the fabric to sag, expand, and wrinkle.

From the exhibition text written by Henry Urbach:

Andrew Kudless’s P_Wall, commissioned by SFMOMA for this exhibition and its permanent collection, marks a radical reinvention of the gallery wall. Typically smooth, firm, regular and, by convention, “neutral,” the gallery wall has shed its secondary status to become a protagonist in the space it lines. Made of one hundred fifty cast plaster tiles — individually formed by pouring plaster over nylon stretched atop wooden dowels — the new wall possesses an unmistakable corporeal quality. Bulges and crevices; love handles and cleavage; folds, pockmarks, and creases: these are among the characteristics of human skin that come to the fore. Contemporary in its effort to capture dynamic forces in static form, P_Wall nonetheless has its origins in the experiments of earlier, 20th century architects including Antoní Gaudí and Miguel Fisác, both of whom investigated the potential of cast material to yield unique, sensual and, at times, bizarre shapes. P_Wall replaces the modern gallery wall with an unwieldy skin that can only approximate the fleshy enclosure that we, as human beings, inhabit throughout the course of our lives.

SFMoMA also produced a short video about the design and fabrication of the wall.

Credits: Andrew Kudless, Chad Carpenter, Dino Rossi, Dan Robb, Frances Lee, Dorothy Leigh Bell, Janiva Ellis, Ripon DeLeon, Ryan Chandler, Ben Golder, Colleen Paz

SFMoMA July Update

The wall for SFMoMA is done! Or at least my part is pretty much done. The great art movers from Atthowe started crating all of of the panels today and delivering them to the museum. Since the last update we’ve sealed all of the panels so they easier to clean and some of the minor surface discolorations are muted. But, the cast texture of the fabric formwork is still very visible as you can see in the photos.

The opening reception at SFMoMA is on the evening of Thursday, August 6 and the exhibition is open from the following day until November 8th. Here’s the press release from SFMoMA on the larger show: Sensate: Bodies and Design.

SFMoMA June Update

Panels drying in the studio.

Panels drying in the studio.

Morning sun on the drying panels

Morning sun on the drying panels

The new hexagonal tile pattern.

The new hexagonal tile pattern.

A nice detail of the folding, twisting forms

A nice detail of the folding, twisting forms

Detail of a crease. Notice the surface texture left by the fabric form.

Detail of a crease. Notice the surface texture left by the fabric form.

Matsys was commissioned by SFMoMA to produce a wall installation for the upcoming exhibition Sensate: Bodies and Design. After many months of research and prototyping, production on the final wall began in early May and is nearly complete. At the moment, all of the panels have been cast and we are just waiting for them to fully dry. Check back soon for more images of the final installation.

P_Wall(2006)

akudless_pwall_02

Oblique View

IMG_4721

Front Elevation

Side View

Side View

Transformation of image into constraint points through the use of custom rhinoscript

Transformation of image into constraint points through the use of custom rhinoscript

Year: 2006
Location: Banvard Gallery, Knowlton School of Architecture, Ohio State University, Columbus, Ohio
Size: 15′ x 9′ x 1′

Description: This project investigates the self-organization of two materials, plaster and elastic fabric, to produce evocative visual and acoustic effects. Inspired by the work of the Spanish architect Miguel Fisac and his experiments with flexible concrete formwork in the 1960-70s, p_wall attempts to continue this line of research and add to it the ability to generate larger and more differentiated patterns. Starting from an image, a cloud of points is generated based on the image’s grayscale values. These points are then used to mark the positions of dowels which constrain the elasticity in the fabric formwork. Plaster is then poured into the mould and the fabric expands under the weight of the plaster. The resultant plaster tile has a certain resonance with the body as it sags, expands, and stretches in its own relationship with gravity and structure. Assembled into a larger surface, a pattern emerges between the initial image’s grayscale tones and the shadows produced by the wall.

Team: Andrew Kudless and Ivan Vukcevich with Ryan Palider, Zak Snider, Austin Poe, Camie Vacha, Cassie Matthys, Christopher Friend, Nicholas Cesare, Anthony Rodriguez, Mark Wendell, Joel Burke, Brandon Hendrick, Chung-tzu Yeh, Doug Stechschultze, Gene Shevchenko, Kyu Chun, Nick Munoz, and Sabrina Sierawski, and Ronnie Parsons

Voronoi Morphologies

Prototype testing algorithm

Prototype testing algorithm

Prototype detail

Prototype detail

2.5D surface voronoi drawings

2.5D surface voronoi drawings

2.5D surface voronoi FDM model

2.5D surface voronoi FDM model

2.5D surface voronoi FDM model

2.5D surface voronoi FDM model

3D voronoi drawings

3D voronoi drawings

3D paper prototype

3D paper prototype

3D paper prototype detail

3D paper prototype detail

Plaster prototype

Plaster prototype

Plaster prototype

Plaster prototype

Year: 2005-2006
Location: Columbus, Ohio
Description: Voronoi Morphologies is the latest development in an ongoing area of research into cellular aggregate structures. The voronoi algorithm is used in a wide range of fields including satellite navigation, animal habitat mapping, and urban planning as it can easily adapt to local contingent conditions. Within our research, it is used as a tool to facilitate the translation and materialization of data from particle-simulations and other point-based data into volumetric form. Through this process, it becomes much easier to produce highly differentiated structures that are responsive to local performance criteria.

The project was developed though both 2D and 3D voronoi cellular structures. In both cases, a field of points is used to determine regions of space, or cells, that are closer to a certain point than any other point. As the cells are not constrained by a fixed geometric topology, the cells properties can be tuned in much more specific ways than a tradition rectangular or hexagonal cell arrangement. A custom-designed script was written to connect Rhino with Qhull which did the actual voronoi calculations. The script also digitally unfolds, labels, and prepares the geometry for CNC fabrication.

This technique was developed in collaboration with Jelle Feringa of EZCT Architecture and Design Research in Paris.

For more information about computing convex hulls, voronoi diagrams, and other triangulations, check out the qhull website. Qhull is used in Matlab and many other computational geometry applications.

Cellular Form-Finding

Plaster form-finding model

Plaster form-finding model

Plaster form-finding model

Plaster form-finding model

Analysis of prototype

Analysis of prototype

Plaster prototype 2

Plaster prototype 2

Plaster prototype 2 detail

Plaster prototype 2 detail

Various plaster prototypes using balloons withing balloons

Various plaster prototypes using balloons withing balloons

Plaster prototype

Plaster prototype

Plaster prototype

Plaster prototype

Year: 2004-2009
Location: London

Description: Inspired by the work of scientists William Thomson (Lord Kelvin), Joseph Plateau, and D’Arcy Thompspn as well as the designer Frei Otto on the geometry of cellular bodies, this ongoing project explores physical form-finding techniques and aggregate structures. In an attempt to embody the knowledge gained through an investigation of the physics and mathematics of minimal surfaces, surface tension, and cellular aggregates by Kelvin, Plateau, and Thompson, the project looked to physical experiments that would reveal the basic laws of aggregation. Cellular bodies (water filled balloons) were allowed to self-organize into packed clusters. By casting the negative space around the cellular aggregates, it was possible to easily fabrication what are called cellular solids (solid foams). The research began in London while at the Architectural Association and has continued over the years, informing many other projects such as C_Wall, Voronoi Morphologies, and P_Wall.