MATSYS

Posts Tagged ‘Digital Fabrication’

SCIN Cube


Location: London Design Festival, SCIN Gallery
Date: 2012
Materials: 3D Printed Concrete
Tools: Rhino, Grasshopper, Weaverbird
Dimensions: 20cm x 20cm x 20cm

Project Description
SCIN, a material resource center for designers and architects in London, asked a small group of emerging designers to produce a small cube that represents their approach to design, materiality, and technology for an exhibition that coincides with the London Design Festival. Our submission reflects the reoccurring presence in our work of cellular solids, a transmaterial grouping characterized by high strength to weight ratios. The cube was designed using a network of digital cellular bodies that are first relaxed to produce a more uniform field and then structurally differentiated in relation to their distance to the outside surface. The inner core’s cell edges are extremely thin and fragile yet are protected by the multiple layers of increasing more robust edges closer to the cube boundary. For the exhibition we collaborated with the fabrication consultancy Emerging Objects to create a simple yet lightweight cube that is digitally printed from concrete. This sample of our work embodies our interests and facility with digital craft, material innovation, and structural performance.

Credits
Andrew Kudless (design), Emerging Objects (fabrication)


Photo by Emerging Objects

Photo by Emerging Objects

Photo by Emerging Objects

Photo by Emerging Objects

SCIN Cube 04

SCIN Cube 03

Shellstar Pavilion


Date: 2012
Size: 8m x 8m x 3m
Materials: 4mm Translucent Coroplast, Nylon Cable Ties, Steel Foundations, PVC and Steel Reinforcement Arches
Tools: Rhino, Grasshopper, Kangaroo, Python, Lunchbox, Rhinoscript
Location: Wan Chai, Hong Kong
Event: Detour 2012

Description:
Shellstar is a lightweight temporary pavilion that maximizes its spatial performance while minimizing structure and material. Commissioned for Detour, an art and design festival in Hong Kong in December 2012, the pavilion was designed to be an iconic gathering place for the festival attendees. Located on an empty lot within the Wan Chai district of Hong Kong, the design emerged out of a desire to create a spatial vortex whereby visitors would feel drawn into the pavilion center and subsequently drawn back out into the larger festival site. Working fully within a parametric modeling environment, the design was quickly developed and iterated with the 6 weeks of design, fabrication, and assembly. The design process can be broken down into 3 processes that were enabled by advanced digital modeling techniques:

Form-Finding
The form emerged out of a digital form-finding process based on the classic techniques developed by Antonio Guadi and Frei Otto, among others. Using Grasshopper and the physics engine Kangaroo, the form self-organizes into the catenary-like thrust surfaces that are aligned with the structural vectors and allow for minimal structural depths.

Surface Optimization
The structure is composed of nearly 1500 individual cells that are all slightly non-planar. In reality, the cells must bend slightly to take on the global curvature of the form. However, the cells cannot be too non-planar as this would make it difficult to cut them from flat sheet materials. Using a custom Python script, each cell is optimized so as to eliminate any interior seams and make them as planar as possible, greatly simplifying fabrication.

Fabrication Planning
Using more custom python scripts, each cell was unfolded flat and prepared for fabrication. The cell flanges and labels were automatically added and the cell orientation was analyzed and then rotated to align the flutes of the Coroplast material with the principal bending direction of the surface.

Credits:
Schematic Design: Andrew Kudless / Matsys
Design Development and Prototyping: Andrew Kudless and Riyad Joucka
Fabrication and Assembly: Art Lab / Ricci Wong, Wong Sifu, Geoff Wong, Wilton Ip, Justin ling, April Lau, Andrew Kudless, Riyad Joucka, Eric Lo, John Thurtle, Garkay Wong, Felice Chap, Kenneth Cheung, Godwin Cheung, Quentin Yiu, Rena Li, Garesa Hao En, Cheryl Ceclia Lui, Huang Xinliu, Horace Cheng
3D Scanning of Built Structure: Topcon HK using a Faro Focus3D Scanner


ShellStar-7733

Photo: Dennis Lo

ShellStar-7776

Photo: Dennis Lo

ShellStar-7792

Photo: Dennis Lo

ShellStar-7813

Photo: Dennis Lo

ShellStar-7817

Photo: Dennis Lo

ShellStar-7823

Photo: Dennis Lo

ShellStar-7829

Photo: Dennis Lo

ShellStar-7849

Photo: Dennis Lo

ShellStar-7852

Photo: Dennis Lo

ShellStar-7854

Photo: Dennis Lo

ShellStar_Diagrams 1

ShellStar_Diagrams 2

ShellStar_Diagrams 3

Shell Star Assembly and Construction from Riyad Joucka on Vimeo.

Photo: 3D Scan of Shellstar: No. of scanned points: 170 Million, No. of Set-ups: 10, Scanner: FARO FOCUS3D, Scanning Time: 1.5 hrs, Data Processing: ~15 minutes, Avg. Pt. Spacing : ~5 mm

Chrysalis (III)

Date: 2012
Size: 190cm x 90cm x 90cm
Materials: Composite paper-backed wood veneers from Lenderink Technologies. Cherry veneer (exterior) and poplar veneer (interior).
Tools: Grasshopper, Kangaroo, Python, Lunchbox, Rhinoscript
Location: Permanent Collection of the Centre Pompidou, Paris, France
Exhibition: Multiversites Creatives, May 2 – August 6, 2012

Project courtesy Salamatina Gallery. Please contact the gallery for more information on the project.

Description: The latest in a series of projects exploring cellular morphologies, Chrysalis (III) investigates the self-organization of barnacle-like cells across an underlying substrate surface. The cells shift and slide across the surface as they attempt to find a more balanced packed state through the use of a relaxed spring network constrained to the surface. Each cell is composed of two parts: a cone-like outer surface made from cherry veneer and a non-planer inner plate made from poplar veneer that stresses the outer cone into shape. Each of the 1000 cell components are unfolded flat in the digital model, digitally fabricated, and hand assembled.

For more information about the exhibition, please download the Multiversites Creatives press releases in English or French.

Credits: Andrew Kudless (Design), Jason Vereschak and Emily Kirwan (Fabrication Support), Maciej Fiszer (for the lending of assembly space in Paris), and the Pompidou Centre Industrial Prospectives Department (Valerie Guillaume, Hélène Ducate, Dominique Kalabane, and Marguerite Reverchon)

Orthographic Drawings

Diagram of Plate Formation

Still frames of 2D animation of cell relaxation from pure voronoi network to relaxed voronoi network (vorlax)

Assembly Diagram showing the various stages over 5 days in different colors

Vorlax in 2D from Andrew Kudless on Vimeo.

Vorlax on Surface from Andrew Kudless on Vimeo.

Catalyst Hexshell


Date: 2012
Location: Minneapolis, Minnesota
Size: 25′ x 30′ x 12′
Material: 1/8″ Corrugated Cardboard

Description: This project was the result of a 4-day workshop taught with Marc Swackhamer at the University of Minnesota School of Architecture in March 2012. The workshop explored the design and fabrication of shell structures. Inspired by the work of designers such as Guadi, Otto, and Isler, the workshop explored how digital tools could be used in the design, simulation, and fabrication of a contemporary thin-shell structure. The workshop was structured in the following way:

  • Day 1: Parametric Modeling Tutorials and Lecture on Thin-Shell Structures
  • Day 2: Design Competition among student teams
  • Day 3: Fabrication
  • Day 4: Assembly

Credits: The project could not have happened without the amazingly talented and dedicated students at the University of Minnesota who designed and built the structure using the tools that I provided them at the beginning of the workshop. Thanks to all of them:
Namdi Alexander, Daniel Aversa, Tia Bell, Alex Berger, Amy Ennen, Andrew Gardner, John Greene, Kelly Greiner, Artemis Hansen, David Horner, Jonathon Jacobs, Hwan Kim, Jenn McGinnity, Shona Mosites, Kristen Salkas, Stuart Shrimpton, Paul Treml, Katie Umenthum, Pablo Villamil.

Catalyst Hexshell from Andrew Kudless on Vimeo.

Construction drawing used by the team to divide the larger shell into smaller assemblies.

Catalyst Catenary Simulation from Andrew Kudless on Vimeo.

Catalyst Catenary Construction Time Lapse from Andrew Kudless on Vimeo.

Cross-Fabricated Scales


Workshop Title: Cross-Fabricated Scales
Date: September 27-30, 2010
Location: Chinese University of Hong Kong

Description:
This workshop explored material systems through an iterative design process that alternates between analogue and digital modeling techniques. The workshop introduced students to various physical form-finding techniques that investigate and simulate the interrelatedness of material, structure, and form. After completing these hands-on experiments, students were given an intensive introduction to parametric modeling using the Grasshopper plug-in for the 3D modeling program Rhino. Using this generative design environment, students began to explore how to abstract the principles learned in the physical form-finding models into digital para-metric models. Finally, workshop students developed a series of digitally fabricated models from their digital models that resonate with the logic and material forces of the initial physical experiments.

The workshop was part of a larger studio taught by Prof. Wendy Fok of WE-Designs.org.

Diploid_B Lamp

Year: 2010
Size: 20″ x 20″ x 20″

Description: Working with an updated version of the script that produced the earlier Diploid Lamps, this new lamp is fabricated entirely without glue. Every connection is a locking tab that enables the lamp to be built quickly despite the nearly 1000 parts. For price, please email info@matsysdesign.com

Zero/Fold Screen


Year: 2010
Size: 10′ x 10′ x 3′
Location: Kasian Gallery, University of Calgary, Canada

Description: Although digital fabrication has allowed architects and designers to explore more complex geometries, one of the byproducts has been a lack of attention to material waste. Often digitally fabricated projects are generated from a top-down logic with the parameters of typical material sheet sizes being subordinated to the end of the design process. This project attempts to reverse that logic by starting from the basic material dimensions and then generating a series of components that will minimize material waste during CNC cutting while still producing an undulating, light-filtering screen in the gallery.

Diploid Lamp Series

IMG_2222

IMG_2199

IMG_2188

IMG_2208

IMG_2209

IMG_2232

lex_plan_asbuilt_xray

Year: 2009
Size: 36″ x 12″ x 12″

Description: The Diploid Lamp series explores multiple patterns inspired by nature such as scales, honeycombs, and barnacles. Using parametric modeling, scripting, and digital fabrication, the light’s geometry is created, refined, and produced. Each lamp is custom designed and hand assembled from digitally fabricated paper components. The series is composed of five individual lamps and is an ongoing project.

Digital Fabrications: Architectural and Material Technologies

Year: 2009
Projects Featured: Honeycomb Morphologies, P_Wall (2006), C_Wall
This is a great new book by Lisa Iwamoto covering a wide range of contemporary digital design. In addition to projects by Matsys, the book features projects by Office dA, Thom Faulders, Chris Bosse, MOS, and many others. Check it out.

FLUX: Architecture in a Parametric Landscape

Photo by Kory Bieg

Photo by Kory Bieg

Photo by Andy Payne

Photo by Andy Payne

Curation diagram

Curation diagram

Photo by Kory Bieg

Photo by Kory Bieg

Photo by Kory Bieg

Photo by Kory Bieg

Photo by Kory Bieg

Photo by Kory Bieg

Photo by Kory Bieg

Photo by Kory Bieg

Photo by Andy Payne

Photo by Andy Payne

Photo by Andy Payne

Photo by Andy Payne

Photo by Andy Payne

Photo by Andy Payne

Photo by Kory Bieg

Photo by Kory Bieg

Prototype Model

Prototype Model

Grasshopper Definition by Andy Payne

Grasshopper Definition by Andy Payne

Year: 2009
Location: California College of the Arts, San Francisco

Description: FLUX: Architecture in a Parametric Landscape by CCA Architecture/MEDIAlab is an exhibition that focuses on the emerging field of advanced digital design. In the last two decades of architectural practice, new digital technologies have evolved from being simply representational tools invested in the depiction of existing models of architectural space to becoming significant performative machines that have transformed the ways in which we both conceive and configure space and material. These tools for design, simulation, and fabrication, have enabled the emergence of new digital diagrams and parametric landscapes—often emulating genetic and iterative dynamic evolutionary processes—that are not only radically changing the ways in which we integrate disparate types of information into the design process, but are also significantly altering the methodological strategies that we use for design, fabrication and construction. After the early digital explosion of the 1990’s, new forms of rigor and production have entered into the field of architecture, supporting the emergence of parametric and building information modeling and the enhanced use of computational geometry and scripting that together represent the second critical wave of digital design practices. That our current models of space are far more continuous, variant and complex, is specifically a result of the tools we are using to produce them, an inevitable byproduct of the ever-expanding capacities of digital computation and related fabrication technologies as these intersect with theoretical trajectories that long ago dismantled the social, functional and technological truths of the early part of this century.

The FLUX exhibition was generated in conjunction with this year’s CCA Architecture Lecture Series focused on the integration of digital practices and design, CCA MEDIAlab’s digital workshops and the International Smart Geometry conference held in San Francisco in the spring of 2009. The content of the exhibition is organized through a series of thematic categories each of which explores a set of spatial logics that have been transformed through advanced digital practices: Stacked Aggregates, Modular Assemblages, Pixelated Fields, Cellular Clusters, Serial Iterations, Woven Meshes, Material Systems, and Emergent Environments. In this exhibit, these themes are elaborated through the presentation of 50 built works and experimental architectural projects, and are expanded by analytical diagrams and 3D printed models generated by CCA architecture students.

The FLUX installation, developed by a team of CCA faculty and students, also explores the possibilities of parametric modeling and digital fabrication through the production of the exhibition armature. Produced using CCA’s new CNC router and advanced parametric modeling techniques, the undulating structure expands and contracts as its volume extends down the center of the long nave space. Through the use of parametric modeling and a series of custom designed scripts, the installation design can be quickly updated to address new design criteria. From the thickness of the ribs to the overall twisting geometry and perforated skins, the spatial form of the armature is controlled through a complex set of relationships defined by its formal, performative, and fabrication constraints.

Official Credits
Architect: CCA Architecture/MEDIAlab
Location: San Francisco, United States
Date: 2008 – 2009

The FLUX installation, developed over 6 months by a team of CCA faculty and students, explores the possibilities of parametric modeling and digital fabrication at CCA. Produced using CCA’s brand new CNC router and advanced parametric modeling techniques, the structure undulates in plan and section producing a sense of expansion and contraction in the long Nave space. Through the use of parametric modeling and a series of custom designed scripts, the installation design can be quickly updated to address new design criteria. From the thickness of the ribs to the overall twisting geometry and perforated skins, the geometry is controlled through a complex set of relationships between its formal, performative, and fabrication constraints.

Director of Architecture: Ila Berman
Project Coordinator and Director of the MEDIAlab: Andrew Kudless
Installation Design: Kory Bieg, Andre Caradec, Andrew Kudless, Ila Berman
Exhibition Curation: Andrew Kudless with Ila Berman and Marc Fornes
Graphic Design Assistants: Jessica Gibson, Andy Payne, Melissa Spooner
Parametric Design Consultant: Andy Payne
Installation Team: Laurice der Bedrossian, Yoon Choi, Stephanie Close, Loi Dinh, David Garcia, Jessica Gibson, John Hobart-Culleton, Charlotte Hofstetter, Madaline Honig, Wayne Lin, Sandra Lopez, Mariko Low, Jen Melendez, Michelle Mucker, Andrew Peters, Jason Rhein, Ocean Rogoff, Angela Todorova, Dianne de la Torre, Michael Victoria, Olesya Yefimov
Graphic Design, Modeling and Scripting Team: Olutobi Adamolekun, Lynn Bayer, Ripon DeLeon, Anthony Diaz, Alexa Getting, Jessica Gibson, Noah Greer, Benjamin Harth, Madeline Honig, Elizabeth Jackson, Pouya Khakpour, Anna Leach, Ryan Lee, Charles Ma, David Manzanares Garcia, Ariane Mates, Andy Payne, Harsha Pelimuhandiram, Michael Perkins, Javier Rodriguez, Ricardo Ruiz, Melissa Spooner, Jessica Stuenkel, Vladimir Vlad, Duncan Young
Sponsors: SolidThinking, K Bieg Design, SUM Arch, Vogue Graphics
CNC Fabrication Support: Ryan Buyssens, Jo Slota
Consultation: Chris Chalmers, Andrew Sparks

Sky Rail

Final Prototype (Image by SUM Arch)

Final Prototype (Image by SUM Arch)

Final Design (Image by SUM Arch)

Final Design (Image by SUM Arch)

Site Diagram (Image by SUM Arch)

Site Diagram (Image by SUM Arch)

Process: Step 1: Select Guidelines

Process: Step 1: Select Guidelines

Process: Step 2: Mesh creation through script

Process: Step 2: Mesh creation through script

Process: Step 3: Convert to Polysurface

Process: Step 3: Convert to Polysurface

Process: Step 4: Convert to Mesh and Weld Seams

Process: Step 4: Convert to Mesh and Weld Seams

Process: Step 5: Smooth Mesh

Process: Step 5: Smooth Mesh

View inside the railing of the twisting holes

View inside the railing of the twisting holes

Prototype image showing the angled aperatures

Prototype image showing the angled aperatures

Year: 2007-2008
Location: San Francisco

Description: Matsys was hired as a computational geometry consultant by SUM Arch on this residential project to help create tools to design a stair railing. Using a series of user-generated guidelines, the script builds a irregular cellular pattern of apertures on the railing. Based on a field of attractors, the apertures rotate in the plane of the railing causing the entire railing to open towards certain views as a person walks up or down the stair. Dozens of script iterations were explored before the final design was achieved.

Branching HyPar

IMG_0812

IMG_0971

IMG_0987

IMG_0890

IMG_0964

At the event. Photo: Craig Scott

At the event. Photo: Craig Scott

Video projections by Chris Larson

Video projections by Chris Larson

Branching points at balconies

Branching points at balconies

DSC_0296

Plan

Plan

BAM_s7_v01

Early renderings of design

Early renderings of design

BAM_s01_v02

BAM_s01_v03

BAM_s01_v04

Year: 2008
Location: Berkeley Art Museum

Description: From artists such as Naum Gabo to architects such as Antoni Gaudi, Felix Candela, and Frei Otto, the geometric entity known as a hyperbolic paraboloid has emerged as something that is both formally evocative and easily constructible. Although composed of only straight lines, the hyperbolic paraboloid traces a complexly curved surface. For this installation, the central space of the Berkeley Art Museum is tied together with a series of HyPar surfaces that emerge from the upper levels and then bifurcate at each balcony, framing a series of video projections.

The installation was created to celebrate the 30th anniversary of the Matrix, the contemporary art department of the Berkeley Art Museum. Although it was only commissioned for a one-night party on April 25, 2008, the curators of the museum decided to keep it up for a few months. The installation consists of around 15,000′ of nylon rope, 4 steel frames, 4 laser-cut acrylic column braces (affectionately knowns as the “armadillos”), and 4 amazing videos created by Chris Lael Larson of Natural Lighting in Portland.

Design and Fabrication
Andrew Kudless of Matsys

Design Collaborators
Lisa Iwamoto and Craig Scott of IwamotoScott

Steel Fabrication
Joel Hirschfeld of Hirschfeld Fabrications

Motion Graphics Design
Chris Lael larson of Natural-Lighting.com

Engineering Consultation
Andrew Sparks

Installation Team
Michael Chang
John Kim
Thien Mac
Pia-Jacqlyn Malinis
Ashley Matsu
Natsuki Matsumoto
Plamena Milusheva
Azadeh Omidfar
Colleen Paz
Aaron Poritz
Eleanor Pries

SmartCloud

Physical prototype by Cook + Fox

Physical prototype by Cook + Fox

Digital prototype: natural light

Digital prototype: natural light

Digital prototype: artifical light

Digital prototype: artifical light

Digital prototype: night lighting

Digital prototype: night lighting

Labeling system for prototype

Labeling system for prototype

sk_08_diagram-4

Ceiling plan of built prototype

Ceiling plan of built prototype

Unrolled cells for laser-cutting

Unrolled cells for laser-cutting

Early design prototypes

Early design prototypes

Early Design Prototypes: Scripts were created for each scenario for design team exploration and testing

Early Design Prototypes: Scripts were created for each scenario for design team exploration and testing

Early Design Prototypes: Fabrication issues

Early Design Prototypes: Fabrication issues

Early Design Prototype: Fabrication diagram

Early Design Prototype: Fabrication diagram

Early Design Prototype: Plan of Scheme 5

Early Design Prototype: Plan of Scheme 5

Early Design Prototype: Section through Scheme 05

Early Design Prototype: Section through Scheme 05

Year: 2007
Location: New York

Description: Matsys provided computational design consulting for Cook + Fox on this project. The project was sited in the lobby of a fashion designer’s studio in a Manhattan tower. The design team needed tools to help them model, visualize, and fabricate their design. Matsys created several rhinoscripts that could be used by the design team to iteratively explore their design concept.

N_Table

N_Table at KSA

N_Table at KSA

N_Table with C_Wall in background

N_Table with C_Wall in background

Detail

Detail

On site

On site

In use

In use

Ronnie stacking the cells

Ronnie stacking the cells

Year: 2007
Location: Columbus, Ohio

Description: This table was designed for small video installation by Norah Zuniga Shaw. The table is made from roughly 200 individual folded paper cells. Using a variation of the rhino-qhull algorithm, each voronoi cell face is further triangulated to create a more rigid structure. The geometry of cells becomes increasingly irregular from bottom to top. The top of the table is covered with rear-projection fabric while the projection and audio equipment and computer are all contained at the bottom of the table.

Credits: Andrew Kudless and Ronnie Parsons

C_Wall

View from outside the gallery door

View from outside the gallery door

C_Wall with shadows on floor

C_Wall with shadows on floor

The zigzag plan of the wall creates an increased structural stiffness

The zigzag plan of the wall creates an increased structural stiffness

DSC_3371

Dense pattern of shadows

Dense pattern of shadows

IMG_1277

Process diagram

Process diagram

Year: 2006
Location: Banvard Gallery, Knowlton School of Architecture, Ohio State University, Columbus, Ohio
Size: 12′ x 4′ x 8′

Description: This project is the latest development in an ongoing area of research into cellular aggregate structures that has examined honeycomb and voronoi geometries and their ability to produce interesting structural, thermal, and visual performances. The voronoi algorithm is used in a wide range of fields including satellite navigation, animal habitat mapping, and urban planning as it can easily adapt to local contingent conditions. Within our research, it is used as a tool to facilitate the translation and materialization of data from particle-simulations and other point-based data. Through this operation, points are transformed into volumetric cells which can be unfolded, CNC cut, and reassembled into larger aggregates.

Credits: Andrew Kudless and Ivan Vukcevich with Ryan Palider, Zak Snider, Austin Poe, Camie Vacha, Cassie Matthys, Christopher Friend, Nicholas Cesare, Anthony Rodriguez, Mark Wendell, Joel Burke, Brandon Hendrick, Chung-tzu Yeh, Doug Stechschultze, Gene Shevchenko, Kyu Chun, Nick Munoz, and Sabrina Sierawski, and Ronnie Parsons

Voronoi Morphologies

Prototype testing algorithm

Prototype testing algorithm

Prototype detail

Prototype detail

2.5D surface voronoi drawings

2.5D surface voronoi drawings

2.5D surface voronoi FDM model

2.5D surface voronoi FDM model

2.5D surface voronoi FDM model

2.5D surface voronoi FDM model

3D voronoi drawings

3D voronoi drawings

3D paper prototype

3D paper prototype

3D paper prototype detail

3D paper prototype detail

Plaster prototype

Plaster prototype

Plaster prototype

Plaster prototype

Year: 2005-2006
Location: Columbus, Ohio
Description: Voronoi Morphologies is the latest development in an ongoing area of research into cellular aggregate structures. The voronoi algorithm is used in a wide range of fields including satellite navigation, animal habitat mapping, and urban planning as it can easily adapt to local contingent conditions. Within our research, it is used as a tool to facilitate the translation and materialization of data from particle-simulations and other point-based data into volumetric form. Through this process, it becomes much easier to produce highly differentiated structures that are responsive to local performance criteria.

The project was developed though both 2D and 3D voronoi cellular structures. In both cases, a field of points is used to determine regions of space, or cells, that are closer to a certain point than any other point. As the cells are not constrained by a fixed geometric topology, the cells properties can be tuned in much more specific ways than a tradition rectangular or hexagonal cell arrangement. A custom-designed script was written to connect Rhino with Qhull which did the actual voronoi calculations. The script also digitally unfolds, labels, and prepares the geometry for CNC fabrication.

This technique was developed in collaboration with Jelle Feringa of EZCT Architecture and Design Research in Paris.

For more information about computing convex hulls, voronoi diagrams, and other triangulations, check out the qhull website. Qhull is used in Matlab and many other computational geometry applications.