Archive for March, 2013


Location: Tulane University, New Orleans, Louisiana
Date: 2013
Materials: Wood Lathe, Stainless Steel Bolts
Tools: Rhino, Grasshopper, Kangaroo
Dimensions: 35′ x 35′ x 7′

Project Description
This project was developed during a fast-paced 3-day workshop with students at Tulane University. Building on the earlier gridshell research conducted during the SmartGeometry 2012 workshop, this grid shell attempted to improve on various aspects of the earlier prototype. In an effort to both increase fabrication speed while decreasing material waste, the parametric model integrated more material feedback and analysis. First, the model would warn the user if the timber member length exceeded the available timber members in order to eliminate the need for splicing members together. Second, the model would produce warnings whenever the maximum bending radius was exceeded, assuring that the surface curvature was producible at full scale. Third, the edge beam members were doubled to increase the overal stiffness of the beam.

Initial Parametric Modeling and Workshop Instructor: Andrew Kudless
Design, Fabrication, and Assembly: Charles Boyne, Jack Waterman, Kyle Graham, Sam Naylor, Sarah Cumming, Dennis Palmadessa, Elizabeth Kovacevic, Lauren Evans








Shellstar Wins Special Mention in Architizer A+ Awards

Shellstar was honored to receive a special mention award in the Architizer A+ Awards in the Architecture + Modeling category. Check out the project page on Architzer.



Location: London Design Festival, SCIN Gallery
Date: 2012
Materials: 3D Printed Concrete
Tools: Rhino, Grasshopper, Weaverbird
Dimensions: 20cm x 20cm x 20cm

Project Description
SCIN, a material resource center for designers and architects in London, asked a small group of emerging designers to produce a small cube that represents their approach to design, materiality, and technology for an exhibition that coincides with the London Design Festival. Our submission reflects the reoccurring presence in our work of cellular solids, a transmaterial grouping characterized by high strength to weight ratios. The cube was designed using a network of digital cellular bodies that are first relaxed to produce a more uniform field and then structurally differentiated in relation to their distance to the outside surface. The inner core’s cell edges are extremely thin and fragile yet are protected by the multiple layers of increasing more robust edges closer to the cube boundary. For the exhibition we collaborated with the fabrication consultancy Emerging Objects to create a simple yet lightweight cube that is digitally printed from concrete. This sample of our work embodies our interests and facility with digital craft, material innovation, and structural performance.

Andrew Kudless (design), Emerging Objects (fabrication)

Photo by Emerging Objects

Photo by Emerging Objects

Photo by Emerging Objects

Photo by Emerging Objects

SCIN Cube 04

SCIN Cube 03